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Abstract
Expectation maximization (EM) algorithm is to
find maximum likelihood solution for models hav-
ing latent variables. A typical example is Gaussian
mixture model (GMM) which requires Gaussian
assumption, however, natural images are highly
non-Gaussian so that GMM cannot be applied
to perform image clustering task on pixel space.
To overcome such limitation, we propose a GAN
based EM learning framework that can maximize
the likelihood of images and estimate the latent
variables. We call this model GAN-EM, which is
a framework for image clustering, semi-supervised
classification and dimensionality reduction. In M-
step, we design a novel loss function for discrimi-
nator of GAN to perform maximum likelihood esti-
mation (MLE) on data with soft class label assign-
ments. Specifically, a conditional generator cap-
tures data distribution for K classes, and a discrim-
inator tells whether a sample is real or fake for
each class. Since our model is unsupervised, the
class label of real data is regarded as latent variable,
which is estimated by an additional network (E-net)
in E-step. The proposed GAN-EM achieves state-
of-the-art clustering and semi-supervised classifi-
cation results on MNIST, SVHN and CelebA, as
well as comparable quality of generated images to
other recently developed generative models.1

1 Introduction
Expectation maximization (EM) [Dempster et al., 1977] is
a traditional learning framework, which has various applica-
tions in unsupervised learning. A typical example is Gaussian
mixture model (GMM), where data distribution is estimated
by maximum likelihood estimate (MLE) under the Gaussian
assumption in M-step, and soft class labels are assigned using
Bayes rule in E-step. Although GMM has the nice property
that likelihood increases monotonically, many previous stud-
ies [Dagher and Nachar, 2006] [Wainwright and Simoncelli,
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1Supplementary material can be found at http://www.cs.

rochester.edu/∼cxu22/p/.

Figure 1: GAN-EM architecture. G: generator, D: discriminator,
E: E-net, z: random noise, c: specified class, xreal: real images,
and xfake: generated images. G takes z and c as input and generates
xfake. The inverse function of G is approximated by E, which is
trained with input xfake and label c. D takes in both xreal and
xfake and outputs the probability of an input to be real for each
class. E is tasked to make soft class assignments to all xreal.

1999] [Srivastava et al., 2003] have shown that natural im-
age intensities exhibit highly non-Gaussian behaviors so that
GMM cannot be applied to image clustering on pixel space
directly. The motivation of this work is to find an alternative
way to achieve EM mechanism without Gaussian assumption.

Generative adversarial network (GAN) [Goodfellow et al.,
2014] has been proved to be powerful on learning data dis-
tribution. We propose to apply it in M-step to maximize the
likelihood of data with soft class label assignments passed
from E-step. It is easy for GAN to perform MLE as in [Good-
fellow, 2017; Nowozin et al., 2016], but to incorporate the
soft class assignments into the GAN model in the mean-
time is rather difficult. To address this problem, we design
a weighted binary cross entropy loss function for discrimi-
nator where the weights are the soft label assignments. In
Sec. 4, we prove that such design enables GAN to optimize
the Q function of EM algorithm. Since neural networks are
not reversible in most cases, we could not use Bayes rule to
compute the expectation analytically in E-step like that for
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GMM. To solve this, we use generated samples to train an-
other network, named E-net, then predict the soft class labels
for real samples in E-step.

To evaluate our model, we perform the clustering task
based on MNIST and achieve lowest error rate with all 3 dif-
ferent numbers of clusters: 10, 20 and 30, which are common
settings in previous works. We also test the semi-supervised
classification performance on MNIST and SVHN with par-
tially labeled data, both results being rather competitive com-
pared to recently proposed generative models. Especially,
on SVHN dataset, GAN-EM outperforms all other models.
Apart from the two commonly used datasets, we test our
model on an additional dataset, CelebA, under both unsuper-
vised and semi-supervised settings, which is a more challeng-
ing task because attributes of human faces are rather abstract.
It turns out that our model still achieves the best results.

We make the following contributions: (1) We are the first
to achieve general EM process using GAN by introducing a
novel GAN based EM learning framework (GAN-EM) that is
able to perform clustering, semi-supervised classification and
dimensionality reduction; (2) We conduct thoughtful experi-
ments and show that our GAN-EM achieves state-of-the-art
clustering results on MNIST and CelebA datasets, and semi-
supervised classification results on SVHN and CelebA.

2 Related Work
Image Clustering: Image classification has been well de-
veloped due to the advances of Convolutional Neural Net-
work (CNN) [Krizhevsky et al., 2012] in recent years. How-
ever, the excellent classification performance relies on large
amounts of image labels. Deep models are far from satis-
factory in scenarios where the annotations are insufficient.
Therefore, image clustering is an essential problem in com-
puter vision studies. Deep Embedded Clustering (DEC) [Xie
et al., 2016] is proposed to learn feature representations and
cluster assignments using deep neural networks. Another
study on deep clustering is [Peng et al., 2016], which aims
to cluster data into multiple categories by implicitly finding a
subspace to fit each class.

Deep EM: A successful combination of neural networks
and EM is the neural expectation maximization (N-EM) [Gr-
eff et al., 2017]. N-EM trains the parameters of EM using
a neural network, which derives a differentiable clustering
model, and is used for unsupervised segmentation, where N-
EM can cluster constituent objects. Neural-EM aims to learn
the parameters of the mixture models using neural networks.
However, in our GAN-EM, the goal is to learn the weights of
neural networks, i.e., the generator, whose output is the gener-
ated samples based on the currently learned mixture models.
Therefore, the neural network plays a different role between
these two models. Banijamali et al. [Banijamali et al., 2017]
use generative mixture of networks (GMN) to simulate the
GMM. They first use K-means to obtain prior knowledge of
the dataset, and then treat each network as a cluster. Varia-
tional deep embedding (VaDE) [Jiang et al., 2017] combines
GMM with variational autoencoder (VAE), which keeps the
Gaussian assumption. In M-step, VaDE maximizes the lower
bound on the log-likelihood given by Jensen inequality. In

E-step, a neural network is used to model the mapping from
data to class assignment.

GAN Clustering: Generative adversarial networks evolute
through the years. At the outset, the vanilla GAN [Good-
fellow et al., 2014] could not perform clustering or semi-
supervised classification. Springenberg [Springenberg, 2015]
proposed categorical generative adversarial networks (Cat-
GAN), which can perform unsupervised learning and semi-
supervised learning. They try to make the discriminator be
certain about the classification of real samples, and be uncer-
tain about that of generated samples, and apply the opposite
for the generator. Moreover, their model is based on the as-
sumption that all classes are uniformly distributed, while we
relax such assumption in our model. InfoGAN [Spurr et al.,
2017], adversarial autoencoder [Makhzani et al., 2015], fea-
ture matching GAN [Salimans et al., 2016] and pixelGAN
autoencoder [Makhzani and Frey, 2017] are all GAN vari-
ants that can do clustering tasks in unsupervised manner. Our
proposed GAN-EM is quite different from the previous GAN
variants, in which we fit GAN to the EM framework which
has been proved that the likelihood of data increases mono-
tonically. A similar work to ours is [Yang and Zhou, 2018].
Similar to GMM, they fit GANs into the GMM (GANMM).
In GANMM, hard label assignment strategy limits the model
to K-means, which is an extreme case of EM for mixture
model [Bishop, 2006]. We have two main differences from
their work. First, we use soft label assignment, rather than the
hard assignment in GANMM. To the best of our knowledge,
our work is the first to achieve general EM process using
GAN. Second, we use only one GAN, rather than K GANs
where K is the number of clusters. Our model is scalable
with respect of K. The drawback of using multiple GANs
will be discussed in Sec. 4.3. Experimental results show that
our GAN-EM outperforms GANMM by a big margin.

3 GAN-EM
The overall architecture of our model is shown in Fig. 1. We
first clarify some denotations. ψ is the parameters for GAN,
which includes ψG for generator and ψD for discriminator,
and φ is the parameters for multinomial prior distribution,
which is composed of φi = P (c = i;φ). θ = ψ, φ stands
for all the parameters for the EM process. We denote the
number of clusters by K, and the number of training samples
by N .

3.1 M-step
The goal of M-step is to update the parameters θ that max-
imizes the lower bound of log-likelihood logP (x; θ) given
the soft class assignment w = P (c|x; θold) provided by E-
step (where w is a N × K matrix). θ consists of φ and ψ.
Updating φ is simple, since we can compute the analytical
solutions for each φi: φ∗i = Ni/N , where Ni is the number
of samples for the i-th cluster. Details are in Sec. 4.

To update ψ, we extend GAN to a multi-class version to
learn the mixture models P (x|c = i;ψ) for i = 1 . . .K. The
vanilla GAN [Goodfellow et al., 2014] is modified in several
ways as follows.
Generator: Similar to conditional GAN [Mirza and Osin-
dero, 2014], apart from the random noise z, class label infor-



mation c is also added to the input of the generator. With c
as input, we specify the generator to generate the c-th class
images. This makes our generator act as K generators.
Discriminator: Different from the vanilla GAN that uses
only one output unit, we set K units in the output layer.
Loss Function: Here, we only give the form of the
loss functions, the derivation of which will be discussed in
Sec. 4.1 in detail. LG and LD are loss functions of the gener-
ator and the discriminator respectively. We have:

LG =− 1

2
E
c∼U

E
z∼N

exp{σ−1[Dc(G(z, c))]} , (1)

LD = E
c∼U

E
z∼N

K∑
i=1

log(1−Di(G(z, c)))

+ E
x∼Pr

K∑
i=1

wi log(Di(x)) , (2)

where z is random noise, c is the specified class of images to
be generated, U andN are uniform distribution and Gaussian
distribution respectively, x ∼ Pr is to sample images from the
real data distribution. G(z, c) stands for generated images, σ
for sigmoid activation function, and wi = P (c = i|x; θold)
for the i-th class label assignments, which comes from the
previous E-step. Here, Di(·) denotes the i-th output unit’s
value of the discriminator. Notice that LG is a modified form
for the loss of the generator so that GAN can perform likeli-
hood maximization [Goodfellow, 2017]. The first term of LD
means that all output units are expected to give a low proba-
bility to fake images. Conversely, the second term guides the
discriminator to output a high probability for all real ones,
while the loss for each output unit is weighted by the soft
label assignment w passed from E-step.

3.2 E-step
In the unsupervised manner, class label c for real data cannot
be observed and is regarded as latent variable. Thus the goal
of E-step is to estimate such latent variable, which is normally
obtained using Bayes rule given the parameters learned from
the previous M-step. Therefore, we have:

P (c = i|x; θ) = P (x|c = i;ψ)P (c = i;φ)∑
j P (x|c = j;ψ)P (c = j;φ)

, (3)

where P (x|c = i;ψ) represents the distribution of data in
class i given by the generator network, and the denominator
is the normalization term. However, Eq. 3 is hard to calculate
since neural network is not invertible.

To circumvent such problem, we introduce another neural
network, called E-net, to fit the distribution expressed on the
left hand side of Eq. 3. To train the E-net, we first generate
samples from the generator, where the number of generated
samples for cluster i is subject to φi because P (c = i|x; θ)
is proportional to φi according to Eq. 3 (remind that φi =
P (c = i;φ)). After the E-net is well trained, it approximates
the parameters θ and act as an inverse generator. Similar ap-
proach is also used in BiGAN [Donahue et al., 2016], where
they also prove that E = G−1 almost everywhere. However,
the goal of BiGAN is feature learning, which is different from
ours.

Algorithm 1 GAN-EM

1: Initialization: wi = 1/K for i = 1 . . .K
2: for iteration = 1 . . . n do
3: update φ: . M-step
4: φi = Ni/N for i = 1 . . .K
5: update ψ:
6: for epoch = 1 . . . p do
7: train GAN: min

ψG

LG, max
ψD

LD

8: end for
9: for epoch = 1 . . . q do . E-step

10: Sample a batch of c ∼ φ, and obtain G(z, c)
11: train E-net: min

η
LE (η: weights of E-net2)

12: end for
13: update label assignment: w = E(xreal)
14: end for
15: Predict: w = E(xreal)

Specifically, as shown in Fig. 1 we take the output of the
generator, i.e., xfake = G(z, c), as the input of the E-net, and
take the corresponding class c as the output label. Therefore,
we can learn the approximate distribution of the left hand side
of Eq. 3, and thus obtain soft class assignments:

w = P (c|xreal; θ) , (4)

then feed them back to M-step. The E-net takes the following
loss:

LE = E
z∼N

E
c∼φ

CE{E(G(z, c)), u} , (5)

where CE{·, ·} stands for cross-entropy function, u is a one-
hot vector that encodes the class information c, and E(·) is
the output of E-net. The trained E-net is then responsible for
giving the soft class assignment w for real images.

3.3 EM Algorithm
The bridge between M-step and E-step is the generated fake
images with their conditional class labels and the output w
produced by E-net. So far, the whole training loop has been
built up. Then we can train M-step and E-step alternatively to
achieve the EM mechanism without Gaussian assumption. In
the ideal case where neural network reaches global minima,
the convergence can be guaranteed. The solution of neural
network optimization is local minima instead of global min-
ima, which cannot guarantee the likelihood to increase mono-
tonically. However, the experiment results show that the er-
ror rate for clustering decreases monotonically and converges
within 20 epochs in most cases, which will be shown in Sec.
5.2. We start the training with M-step, where w is initialized
with uniform distribution. The pseudo code is in Algorithm 1.

4 Theoretical Analysis
This section mainly focuses on the theoretical analysis of
GAN in M-step. We first show how our model works with
K GANs by deriving the objective functions. Then, we sim-
plify the model by using only one GAN.

2Because E-net aims to learn an inverse function of generator,
η is not independent with ψ. Thus, we could not say that η is the



4.1 Background
In M-step, we aim to maximize the Q function [Bishop, 2006]
expressed as:

Q(θ; θold) = E
x∼Pr

K∑
i=1

P (c = i|x; θold) logP (x, c = i; θ)

= E
x∼Pr

K∑
i=1

wi log[P (x|c = i;ψ)P (c = i;φ)] . (6)

Furthermore, we can write Eq. 6 as the sum of two termsQ(1)

and Q(2):

Q(1) = E
x∼Pr

K∑
i=1

wi logP (x|c = i;ψ) , (7)

Q(2) = E
x∼Pr

K∑
i=1

wi log φi . (8)

Remind that φi = P (c = i;φ) is explained in the previous
section. These two terms are independent with each other, so
they can be optimized separately.

We first optimize Eq. 8. Since φi is irrelevant to x, we can
ignore the expectation because it only introduces a constant
factor. With the constraint

∑
i φi = 1, the optimal solution

forQ(2) is φ∗i = Ni/N (i = 1 . . .K), whereNi is the sample
number of the i-th cluster (Ni is not an integer necessarily
because the class label assignment is in a soft version), and
N is the sample number of the whole dataset. Derivation can
be seen in Appendix A.2.

Then we consider Eq. 7. We are expecting to employ
GANs to optimize Q(1). Each term in the summation in Q(1)

is independent with each other because we are currently con-
sidering K separate GANs. Therefore, we can optimize each
term in Q(1), rewrite it as

Q
(1)
i = E

x∼Pr

wi logPfi(x|c = i;ψi) , (9)

to fit the single GAN model, and sum them up in the end.
Here, ψi is the parameters of the i-th GAN, Pr stands for the
distribution of all real data, and Pfi stands for the fake data
distribution for each cluster c = i.

For convenience, we introduce a new distribution Pri =
1
ZwiPr, where 1

Z is the normalization factor, Z =∫
x
wiPrdx. Substitute Pri into Eq. 9 and we have:

Q
(1)
i = E

x∼Pri

logPfi(x|c = i;ψi) . (10)

The constant coefficient Z is dropped for convenience.

4.2 Objectives
In this subsection, we aim to show how our design for M-step
(i.e. Eq. 1 and Eq. 2) is capable of maximizing Eq. 10 which
takes exactly the form of likelihood. This is feasible due to
the following two facts [Goodfellow, 2017]:

parameter of EM process. In other words, η is not part of θ.

1. MLE is equivalent to minimizing the KL-divergence be-
tween the real distribution and generated distribution;

2. When discriminator is optimal, we can modify the loss
function for generator (as will be shown in Eq. 14) so
that the optimization goal of GAN is to minimize KL
divergence.

Maximizing Eq. 10 is equivalent to minimizing KL(Pri ‖
Pfi) according to fact 1. Then we show that how GANs can
be tasked to minimize such KL-divergence by introducing
minor changes.

According to fact 2, only when discriminator is optimized
can we modify GAN to minimize KL divergence. There-
fore, we consider the optimum of discriminators. With Pri ∼
wiPr, the loss function of the i-th discriminator given any
generator (denoted by fake data) is:

Li = E
x∼Pr

wi logDi(x) + E
x∼Pfi

log(1−Di(x))

= E
x∼Pri

logDi(x) + E
x∼Pfi

log(1−Di(x)) , (11)

where Di(·) is the i-th discriminator, similar to vanilla
GAN [Goodfellow et al., 2014]. We show that when the dis-
criminators reach optimum, L is equivalent to the sum of JS
divergence. The following corollary is derived from Proposi-
tional 1 and Theorem 1 in [Goodfellow et al., 2014].

Corollary 1. Equation 11 is equivalent to the JS divergence
between real distribution and generated distribution for each
cluster when discriminators are optimal, i.e.

Li = −(wi + 1) log 2 + 2JSD(Pri ‖ Pfi) , (12)

and the optimal D∗i for each cluster is:

D∗i (x) =
Pri(x)

Pri(x) + Pfi(x)
. (13)

Proof. See Appendix A.1.

If we use the same loss function for generator as the vanilla
GAN, the JS divergence in Eq. 12 will be minimized. How-
ever, we aim to make GAN to minimize the KL divergence,
KL(Pri ‖ Pfi), for each cluster so as to achieve the goal
of maximizing Eq. 10. In Corollary. 1, we already have the
optimal discriminator given fixed generator. Therefore, ac-
cording to fact 2, we need to modify the loss function for the
generator as:

−1

2
Ez expσ−1[Di(Gi(z))] , (14)

where σ is the sigmoid activation function in the last layer of
the discriminator, and Gi(·) is the output of i-th generator.

Now we have derived the objectives of single generator and
discriminator, and we need to ensemble them up as a whole
model. Since we are currently using K GANs, we only need
to sum up Eq.14 for the loss of generators:

−1

2

K∑
i=1

Ez expσ−1[Di(Gi(z)] , (15)



and sum up Eq. 11 for the loss of discriminators:

K∑
i=1

E
x∼Pr

wi logDi(x) + E
x∼Pfi

log(1−Di(x)) . (16)

Here, Eq. 16 is equivalent to Eq. 2 since x ∼ Pfi is gener-
ated by generator G. The derivation from Eq. 15 to Eq. 1 will
be introduced in Sec. 4.3.

4.3 Single GAN v.s. Multiple GANs
We have shown that K GANs can be tasked to perform MLE
in M-step of EM. In fact, using such many GANs is in-
tractable since the complexity of the model grows along with
cluster numbers proportionally. Moreover, data is separated
per cluster and distributed to different GANs, which could not
make the most use of data for individual GAN efficiently.

Single Generator
For the generator part, we employ a conditional variable
c [Mirza and Osindero, 2014] to make a single generator act
as K generators. Then the final loss function for generator is
exactly Eq. 1.

Single Discriminator
In our work, instead of applying K discriminators, we use
a single discriminator with K output units. Each output has
individual weights in the last fully connected layer. The pre-
ceding layers of the discriminator is shared since the convo-
lutional layers play a role in extracting features that are often
in common among different clusters of data.

To this end, we denote the last fully connected layer of
the discriminator by function D̃, and all other layers by func-
tion f , then we have: Di(x) = D̃i(f(x)) = D̃i(x̃) , ∀i ∈
1, . . . ,K, where x̃ = f(x) stands for the features learned by
f . The objective still holds the form of Eq. 16, but the mean-
ing of Di has changed from the i-th discriminator to the i-th
output unit of D(x) that stands for the probability of x be-
longing to i-th cluster. Till now, we have finished deriving
the loss functions for our proposed model.

In practice, to speed up the learning, we add an extra out-
put unit for the discriminator using a binary cross entropy
function, which is the same as vanilla GAN, only used for
distinguishing all the real data and all the fake data regardless
of class labels.

5 Experiments
We perform unsupervised clustering on MNIST [LeCun et
al., 1989] and CelebA [Liu et al., 2015] datasets, and semi-
supervised classification on MNIST, SVHN [Netzer et al.,
2011] and CelebA datasets. We also evaluate the capability
of dimensionality reduction by adding an additional hidden
layer to the E-net. The results show that our model achieve
state-of-the-art results on various tasks. Meanwhile, the qual-
ity of generated images are also comparable to many other
generative models. The training details and network struc-
tures are illustrated in Appendix B.

(a) MNIST (unsupervised) (b) SVHN (1000 labels)

Figure 2: Clustering and semi-supervised classification results by
GAN-EM.

5.1 Implementation Details
We apply RMSprop optimizer to all 3 networks G, D and E
with learning rate 0.0002 (decay rate: 0.98). The random
noise of generator is in uniform distribution. In each M-step,
there are 5 epoches with a minibatch size of 64 for both the
generated batch and the real samples batch. We use a same
update frequency for generator and discriminator. For E-step,
we generate samples using well trained generator with batch
size of 256, then we apply 1000 iterations to update E-net.

5.2 Unsupervised Clustering
GAN-EM achieves state-of-the-art results on MNIST cluster-
ing task with 10, 20 and 30 clusters. We evaluate the error
rate based on the following metric which has been used in
most other clustering models in Tab. 1:

Err = 1− max
m∈M

∑N
i=1 1{li = m(ci)}

N
, (17)

where ci is for the predicted label of the i-th sample, li
for ground truth label, M for all one-to-one mapping from
ground truth labels to predicted labels of all samples in the
cluster, and N for number of all samples. The experimental
results are shown in column 1 of Tab. 1.

Since different models have different experiment setups,
there is no uniform standard for the clustering numbers un-
der the unsupervised setting. MNIST dataset has 10 differ-
ent digits, so naturally we should set the number of clusters
K = 10. However, some models such as CatGAN, AAE, and
PixelGAN use K = 20 or 30 to achieve better performance,
since the models might be confused by different handwrit-
ing styles of digits. In other words, the more clusters we
use, the better performance we can expect. To make fair
comparisons, we conduct experiments with K = 10, 20, 30
respectively. Also, all models in Tab. 1 take input on the
784-dimension raw pixel space. Note that both K-means and
GMM have high error rates (46.51 and 32.61) on raw pixel
space, since MNIST is highly non-Gaussian, which is an ap-
proximate Bernoulli distribution with high peaks at 0 and 1.
The huge margin achieved by GAN-EM demonstrates that the
relaxation of Gaussian assumption is effective on clustering
problem.



MNIST
(Unsupervised)

MNIST
(100 labels)

MNIST
(1000 labels)

SVHN
(1000 labels)

CelebA
(Unsupervised)

CelebA
(100 labels)

K-means 46.511 - - - - -
GMM 32.61(±0.06)1 - - - - -
DEC 15.71 - - - - -
VAE - 3.33(±0.14) 2.40(±0.02) 36.02(±0.10) - 45.38
AAE 4.10(± 1.13)3 1.90(±0.10) 1.60(±0.08) 17.70(±0.30) 42.88 31.03
CatGAN 4.272 1.91(±0.10) 1.73(±0.28) - 44.57 34.78
InfoGAN 5.004 - - - - -
Improved GAN - 0.93(±0.06) - 8.11(±1.30) - -
VaDE 5.541 - - - 43.64 -
PixelGAN 5.27(±1.81)3 1.08(±0.15) - 6.96(±0.55) 44.27 32.54
GANMM 35.70(±0.45)1 - - - 49.32 -
GAN-EM 4.20(± 0.51)1 1.09(± 0.18) 1.03(± 0.15) 6.05(±0.26) 42.09 28.82

4.04(± 0.42)2 - - - - -
3.97(± 0.37)3 - - - - -

Table 1: Experiment results of different models. 1Clustering with K = 10. 2K = 20. 3K = 30. 4Cluster number not specified.

(a) Supervised 1000D (b) Unsupervised 2D

(c) Unsupervised 100D (d) Unsupervised 1000D

Figure 3: Representation of unsupervised dimensionality reduction
on MNIST. Each color denotes one class of digit.

Our proposed GAN-EM has the lowest error rate 3.97 with
K = 30. Moreover, When K = 20, GAN-EM still has bet-
ter results than other models. With 10 clusters, GAN-EM is
only outperformed by AAE, but AAE achieves the error rate
of 4.10 using 30 clusters. VaDE also has a low error rate un-
der the setting of K = 10, yet still higher than that of our
model under the same setting. GANMM has a rather high
error rate3, while GAN-EM achieves the state-of-the-art clus-
tering results on MNIST, which shows that the clustering ca-
pability of EM is much superior to that of K-means. We also
plot the test error rate curve of the training process as shown
in Fig. 4, where each curve stands for one separate training

3When the feature space is reduced to 10 dimensions using
SAE, GANMM achieves an error rate of 10.92 (±0.15) with K =
10 [Yang and Zhou, 2018].

Figure 4: Convergence of test error rate of GAN-EM on MNIST.

(K = 10), to show the convergence of the training.
Then we test our model on CelebA dataset using the same

strategy as stated above. CelebA is a large-scale human face
dataset that labels faces by 40 binary attributes. Totally un-
supervised clustering on such tasks is rather challenging be-
cause these face attributes are so abstract that it is difficult for
CNN to figure out what features it should extract to cluster
the samples. Tab. 1 (column 5) illustrates the average error
rate of different models on all 40 CelebA attributes. We also
list detailed results of GAN-EM on all the 40 attributes in
Appendix A.3. We achieve the best overall result for unsu-
pervised clustering, and we demonstrate two representative
attributes on which we achieve lowest error rates, i.e. hat
(29.41) and glasses (29.89), in Figs. 5, where the two sets
of images are generated by the generator given two differ-
ent conditional labels respectively. The details of strategies
for selecting samples is illustrated in supplementary material
Appendix B.3.

5.3 Semi-supervised Classification
It is easy to extend our model to semi-supervised classifi-
cation tasks where only a small part of samples’ labels are



Figure 5: Unsupervised feature learning on CelebA: (left) ‘hat’;
(right) ‘glasses’.

known, while the remainders are unknown. We use almost
the same training strategies as clustering task except that we
add the supervision to the E-net in every E-step. The method
is that at the end of the E-net training using generated fake
samples, we train it by labeled real samples. Then the loss
function takes the form LE = CE{E(xreal), u}, where u is
the one-hot vector that encodes the class label c. Once the
E-net has an error rate below ε on the labeled data, we stop
the training, where ε is a number that is close to zero (e.g. 5%
or 10%) and can be tuned in the training process. The reason
why ε is greater than zero is to avoid over-fitting.

We evaluate the performance of semi-supervised GAN-
EM on MNIST, SVHN and CelebA datasets. As shown in
Tab. 1 (column 2, 3, 4, 6), our GAN-EM achieves rather
competitive results on semi-supervised learning on all three
datasets (state-of-the-art on SVHN and CelebA). The im-
ages generated by GAN-EM on SVHN are shown in Fig. 2b.
On MNIST, when we use 100 ground truth labels for the
semi-supervised classification, the error rate is 1.09, which
is only 0.16 higher than the top-ranking result by improved
GAN, and when 1000 ground truth labels are used, GAN-EM
achieves the lowest error rate 1.03. On SVHN dataset, 1000
labels are applied as other models do, and we achieve state-
of-the-art result with an error rate of 6.05. For CelebA, the
number of ground truth labels is set to 100, and our model
outperforms all other models with respect to average error
rate on all 40 attributes.

5.4 Dimensionality Reduction

We can easily modify our GAN-EM model to perform dimen-
sionality reduction by inserting a new layer r with k hidden
units to the E-net (k is the number of dimension that we want
to transform to). Layer r lays right before the output layer.
Then, we can use exactly the same training strategy as the un-
supervised clustering task. Once the training converges, we
consider the E-net as a feature extractor by removing the out-
put layer. Then we feed the real samples to the E-net and take
the output on layer r as the extracted features after dimen-
sionality reduction. Three different dimensions, i.e. 1000,
100 and 2, are selected for test on the MNIST dataset. We
also apply t-SNE [Hinton, 2008] technique to project the di-
mensionality reduced data to 2D for visualization purpose.

Fig. 3a shows the supervised feature learning result.
Figs. 3b, 3c and 3d are unsupervised data dimensionality re-
duction results with three different dimensions. We can see
that our model can deal with all cases very well. Most differ-
ent digits have large gap with each other and the same digits
are clustered together compactly.

6 Conclusion
In this paper, we propose a novel GAN-EM learning frame-
work that embeds GAN into EM algorithm to do clustering,
semi-supervised classification and dimensionality reduction.
We achieve state-of-the-art results on MNIST, SVHN and
CelebA datasets with competitive fidelity of generated im-
ages. Although all our experiments are performed based on
vanilla GAN, GAN-EM framework can also be embedded by
many other GAN variants and better results are expected.
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